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Chapter 2 - Matchings and Coverings

Let G = (V,E) be a graph.

• A matching M is a subset of E such that each vertex in V is incident with at most one edge in M .

• A vertex incident with an edge in M is called matched (or covered), otherwise it is unmatched (or
exposed).

• A matching is perfect if every vertex is matched.

• a k-factor in G is an induced k-regular subgraph.

1: Find a maximum matching in the following graph.

Let G = (V,E) and H be a graphs.

• A packing of G in H is a set of vertex subgraphs each isomorphic to H. (Copies don’t need to be induced)

• A covering is U ⊆ V such that each copy of H in G contains a vertex in U .

Typical problem is minimize covering and maximize packing.

2: Show that smallest covering is at least as large as the largest packing.

Solution: If we have vertex disjoint copies, easily you need at least that many vertices.

3: Find a largest matching. Find smallest covering for matching.

Solution:

A path P is M-alternating if E(P ) \M is a matching. An M-alternating path P is M-augmenting if P
has positive length and both its endpoints are unmatched/exposed in M . Augmented M ′ = M∆E(P ).
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4: Assume there is a matching M (thick lines). Find M -augmenting path(s) and augment M .
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Solution: An M -augmenting path is a path P with endpoints exposed, inner points
covered and the edges of the matching are alternating on P . On the left for example
v1, v2, v3, v4, v5, v6. On the right it is v1, v2, v3, v7, v6, v5, v4, v8.
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5: Can we use augmenting walks instead of paths? It particular, examine walk
v1, v2, v3, v4, v5, v6, v7, v5, v4, v8 in the graph on the right-hand side.

Solution: We cannot augment on it. Both v4 and v5 would have two matching edges.

Theorem (Berge 1957) Let G be a graph with a matching M . Then M is maximum if and only if G has no
M -augmenting path.

6: Prove Theorem. (Hint: symmetric difference)

Solution: ⇒: Augmenting path increases the size of the matching
⇐. Consider M ′ being a matching with more edges than M . Take the symmetric
difference of M and M ′. It is a graph of maximum degree two, which gives set of even
cycles and paths. Implies one of the paths must be M -augmenting.

Theorem 2.1.1 (König 1931) Let G be a bipartite graph. The cardinality of maximum matching is equal to
the minimum vertex cover of its edges.

Proof One direction is clear. Take maximum matching M and construct a nice cover. Let the bipartition be
A ∪B = V (G). For each edge ab ∈M , we put to the cover U vertex b iff it is an endpoint of some augmenting
path that starts in A. Otherwise we put a to U .

7: Let ab ∈ E. Which cases one needs to consider to argue ab has at least one endpoint in U?

Solution: If ab ∈ M , a or b in U . At least one of a, b covered M , otherwise M not
maximal.
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If a is not covered by M , then b is covered and ab is an M -alternating path, meaning
b ∈ U .
Hence a is covered and part of a matching edge ab′ ∈M . If a ∈ U , we are done. Hence
b′ in U and there is an M -alternating path P ending in b′. The path P either uses b and
then b is also covered and b ∈ M or P does not use b, then the path can be extended
as Pb′ab. In either case, by maximality of M , b is matched in M . And M -alternating
path ends there, hence b ∈ U . Why the path argument works? Discuss why, how can
we do Pb′ab? Will it be a path?

Theorem (Hall 1935) Let G = (V,E) be a bipartite graph with bipartition V = A∪B. G contains a matching
of A if and only if |N(S)| ≥ |S| for all S ⊆ A.

8: Show that the condition of Hall’s theorem is necessary. I.e. if there is a matching M matching every vertex
in A, then |N(S)| ≥ |S| for all S ⊆ A. This condition is sometimes called marriage condition or Hall’s condition.

Solution: It is obvious but good to realize the condition is necessary. Each vertex in
S is matched by M to a different vertex in N(S), hence |N(S)| ≥ |S|.
9: Prove Hall’s theorem by finding M -augmenting path. Let a ∈ A be unmatched in M . Consider A′ ⊆ A that
can be reached from a by an M -alternating path. Use the marriage condition (or Hall’s condition) on A′.

Solution: First we observe that all vertices in A′ \ {a} are matched. That is how we
reached them. Now |N(A)| ≥ |A|, so there must be an unmatched b ∈ |N(A)|. Say
vb ∈ E. Then there is M -alternating path P from a to v and Pb is an M -augmenting
path. Draw a picture to see how the augmenting paths behave.

10: Prove Hall’s theorem by induction on |A|. Base case. Then try to resolve case |N(S)| ≥ |S| + 1 for every
proper subset. Then use a proper subset satisfying |N(S)| = |S|.

Solution: Base case is |A| = 1 and Hall’s condition is saying there is at least one
neighbor to match.

If |N(S)| ≥ |S|+1 for every proper S ⊂ A, then pick any edge ab, and consider G−ab.
Notice that Hall’s condition is still true because N(S) maybe lost b but that is all.
From induction we get a matching M and add edge ab to it.

Finally, let A′ ⊂ A be such that |A′| = |N(A′)|. Let N(A′) = B′. By induction, we can
find a matching in G′ := G[A′, B′]. We also need to find a matching in G−A′−B′. We
need to check Hall’s condition for G−A′−B′. Let S ⊆ A−A′. Suppose for contradiction
that |N(S)−B′| < |S|. But then S ∪A gives N(S ∪A)| = |(N(S) \N(A))∪N(A)| =
|N(S)−B′|+ |N(A)| < |S|+ |A|, which is a contradiction. Hence there is a matching
in G− A′ −B′ for A− A′.
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11: Prove Hall’s theorem by considering a subgraph H of G that is edge-minimal while satisfying Hall’s
condition. Clearly, dH(a) ≥ 1 for each a ∈ A. The goal is to show dH(a) = 1 for each a ∈ A, that means H is
a matching for A.

Solution: Let a have neighbors b1, b2 ∈ B. H − b1 and H − b2 violate Hall’s condition
by minimality. Hence Exist A1, A2 ⊆ A such that Bi := NH−abi(A1) and |Bi| < |Ai|.
Notice b1 ∈ B2 and b2 ∈ B1.
|NH(A1∩A2\{a})| = |B1∩B2| = |B1|+ |B2|−|B1∪B2| ≤ |A1|−1+ |A2|−1+ |A1∪A2|
= |A1 ∩ A2| − 2 = |A1 ∩ A2 \ {a}| − 1

A matching is perfect if it is 1-factor.

12: Show that every k-regular (k ≥ 1) bipartite graph has a 1-factor (means perfect matching).

Solution: Verify Hall’s condition. Let S ⊆ A. The number x of edges leaving S is
x = k|S|. From the other side, x ≤ k|N(S)|. Together we get |S| ≤ |N(S)|.

Let S1, S2, . . . , Sn be nonempty finite sets. Then this collection of sets has a system of distinct representa-
tives if there exist n distinct elements x1, x2, . . . , xn such that xi ∈ Si for 1 ≤ i ≤ n.

13: Find a system of distinct representatives for the following sets

S1 = {1, 2, 3} S2 = {2, 4, 6} S3 = {2, 5, 6} S4 = {3, 4, 5} S5 = {1, 4, 6}

Solution: Almost greedy algorithm will work.

Theorem (Original formulation of Hall’s Theorem)
A collection {S1, S2, . . . , Sn} of nonempty finite sets has a system of distinct representatives if and only if for
each integer k with 1 ≤ k ≤ n, the union of any k of these sets contains at least k elements.

14: Use Hall’s theorem to prove its original formulation.

Solution: Turn the system of distinct representatives into a bipartite graph, when ver-
tices of one part correspond to elements in ∪iSi and vertices the other part correspond
to sets S1, . . . , Sn.
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